METER DOES NOT MECHANICALLY RESTORE ALL THE WAY TO ZERO POINT
The meter on the face has a screw that changes a coil spring tension to make the pointer align exactly with the left side (zero) position of the scale. Moving the screw will move the pointer further away or closer but it never gets all the way to the zero line. Not sure what I will be able to do about this.
DECIDED TO CHECK POWER SUPPLY VOLTAGES AND OTHER CHECKS OF THE CIRCUITS
I opened the meter, with the expensive manual I purchased, looking for the test points listed for the +8.5, -6 and other voltages. The first thing I noticed is that the board shown in the manual does not look like my board. The one in my meter is larger and includes the resistor networks for the range switch.
More importantly, it has no test points labeled TP1, TP2 and TP3. It does have points such as TP63, TP61 and TP62, but they are tied together or otherwise don't make sense as the place to check the supply voltages.
The schematic shows five transistors, five diodes and a bunch of passive components for the power supply, but mine had only two transistor looking objects. The schematic has silicon transistor numbers on it, but my board has an obsolete germanium MHT3030 power transistor made by GPD Optoelectronics and a GE RA1 three lead component.
I was able to track down an old GE manual and found the RA1 as a reference controller for power supplies, consisting of a germanium transistor and a zener diode encapsulated in a single TO-5 style can. The GE manual showed me an example circuit which matches decently with the connections I can see on my meter's board.
I am reverse engineering the power supply part of the PCB in my meter - components that start with a 6 such as R601 or C602. The power transformer and the primary side circuit match well, but it diverges on the output side. The transformer has a long winding with three taps between the two ends. The center tap and the two outer connections are fed through a pair of diodes (half wave rectifier) in both the schematic and in my board. If you number the secondary wires as 7, 5, 8, 6, 9 then the center tap is 8 and the ends are 7 and 9.
On the schematic, 5 and 6 are unconnected. The pilot light is powered from a resistor off the output of the two diodes. Yet, on my meter, windings 5 and 6 are connected to the pilot light, driving it with AC.
I am carefully reverse engineering the power supply as it exists on my meter, drawing it out and noting parts values. I will then check whether it is working as intended and make adjustments if necessary. That will happen in a later workshop session.
I paid a relatively high price for the manual from the manufacturer, who used my serial number but didn't have a version of the manual old enough. The sent me the oldest version in their files, which as I mentioned was in the silicon semiconductor era while mine is an old design using germanium devices. I suspect I will find many differences in the rest of the manual and schematic as I work on this project.
No comments:
Post a Comment